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Summary of Prosress

During the period February 1, 1991 - July 31, 1991, progress was made in the following

areas:

1) Coding Gains for Bandwidth Efficient Codes

With his 1948 paper "The Mathematical Theory of Communication" Claude E. Shannon

stimulated a body of research that has evolved into the two modern fields of Information

Theory and Communication Theory. That one paper should spawn two active research ar-

eas is extraordinary and, as will become apparent, a direct consequence of the nature of

the results. The fundamental philosophical contribution of this seminal treatise was the for-

mal application of probability theory to the study and analysis of communication systems.

The theoretical contribution of Shannon's work was a useful definition of "information"

and several "channel coding theorems" which gave explicit upper bounds, called the chan-

nel capacity, on the rate at which "information" could be transmitted reliably on a given

communications channel.

In the context of current research in coded modulation, the result of primary interest is

the "noisy channel coding theorem for continuous channels with average power limitations."

This theorem states that the capacity C of a continuous additive white Gaussian noise

(AWGN) channel with bandwidth B is given by

( E,)C=Blog 2 I+_0
(1)

where E_ is the average signal energy in each signalling interval T, and No�2 is the two

sided noise power spectral density. This theorem is both profound in its implications and,

fortunately for communication engineers, frustrating in its ambiguity.

It is profound, because it states unequivocally that for any transmission rate, R, less than

or equal to the channel capacity C, there exists a coding scheme that achieves an arbitrarily

small probability of error; conversely, if R is greater than C, no coding scheme can achieve

reliable communication. The field of Information Theory is, in a strict sense, an effort to

apply Shannon's definition of information and methods of analysis to different channels and

problems, such as cyptography. It is frustrating, because like most existence theorems it

gives no hint as to how to find the appropriate coding scheme or how complex it must be.

Communication engineers and coding theorists make their living trying to create schemes

that achieve the levels of performance promised by Shannon's results. Figure 1 is both a

measure of how close they have come and how much better they can possibly do.

The bound of equation (1) can be put into a form more useful for the present discussion by

introducing the parameter K to represent the average number of information bits transmitted
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per signalling interval. Assuming perfect Nyquist signalling, then

o< I(<c/B

and

E,/No = KEb/No,

where Eb is the average energy per information bit. Substituting the above relations into

equation (1) and performing some minor manipulations yields

2K--1 (2)
Ed No >__---y(---,

which relates the bandwidth efficiency K to the signal-to-noise ratio (SNR) Eb/No. This

bound, labelled Shannon's Bound, is plotted in Figure 1 and represents the absolute best

performance possible for a communications system on the AWGN channel.

In this form, Shannon's bound gives the minimum signal-to-noise ratio required to achieve

a specific bandwidth efficiency with an arbitrarily small probability of error. For example,

if one wants to transmit [( = 1 information bits per channel symbol (signalling interval),

then there exists a coding scheme that operates reliably with an SNR of OdB. Conversely,

any Coding scheme, no matter how complex, sending K = 1 information bits per symbol

with an SNR less than OdB will be unreliable. The bound of equation (2) also manifests the

fundamental tradeoff between bandwidth efficiency and SNR. That is, increased bandwidth

emciency can be reliably achieved only with a corresponding increase in minimum SNR. At

this point, it is important to reiterate that Shannon's results do not suggest what code or

what type of signalling is necessary to achieve this bound, and consequently it can be a

discouraging measure of a system's performance.

In real communication systems, there are many practical considerations that take prece-

dence over Shannon's bound in design decisions. For example, satellite communication sys-

tems that use nonlinear travelling wave tube amplifiers (TWTA's) require constant envelope

signalling such as M-ary phase shift keying (MPSK). Thus, even if Shannon's results firmly

stated that capacity at a bandwidth efficiency of K = 3 information bits per symbol can

be achieved with a rate 3/4, 256 state, convolutional code using 16 quadrature amplitude

modulation (QAM), it would not be feasible to do so on the TWTA satellite link.

It therefore seems reasonable to ask what the minimum SNR required to achieve reliable

communication is given a modulation scheme and a bandwidth efficiency, K. For the discrete

input, continous output, memoryless AWGN channel with M-ary one dimensional, e.g.,

amplitude modulation (AM), or two dimensional (PSI(, QAM) modulation and assuming

equiprobable signalling, the capacity bound becomes

/(*= l°g2 (M)- _--I _]i=0E log 2 j=0_] exp No , (3)
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where a i is a modulator symbol, n is a Gaussian distributed noise random variable with mean

0 and variance N0/2, M is the number of modulation symbols, and E is the expectation

operator. The bound of equation (3) is plotted in Figure 1 for BPSK, QPSK, and 8PSK

modulation.

For a specified signalling method and bandwidth efficiency, this bound represents the

minimum SNR required to achieve reliable communication. For example, to send K = 1

information bits per signalling interval using QPSK modulation requires a minimum SNR

of Eb/No = 0.5dB. Any system using QPSK modulation with K = 1 and operating with a

SNR lower than 0.5dB will not be reliable, regardless of complexity.

Also depicted on the figure is the performance of a number of real coded communications

systems with a variety of bandwidth efficieneies. These points are plotted by determining,

either analytically or by simulation, the SNR required for the system to achieve an informa-

tion bit error rate (BER) of 10 -5. (Thus, a BER of 10 .5 is chosen as the "arbitrarily small

probability of error.") By comparing these points to the corresponding bound with the same

bandwidth efficiency and type of modulation, it can be seen how close a system is to the

ultimate performance. For example, the well known rate R = 1/2, memory 6, convolutional

code sends K = 1 information bits per QPSK symbol with a BER of 10 -S at an SNR of

Eb/No = 4.4dB. This is 3.9dB away from the QPSK bound and 4.4dB away from Shannon's

bound.

The performance of a number of recent trellis coded modulation (TCM) schemes are also

shown on the figure. For an information rate of 2 bits per symbol, the Ungerboeck R = 2/3,

memory 6, 8PSK trellis code is 3.0dB from the bound and performs 0.4dB better than the

R = 2/3, memory 6, 8PSK pragmatic trellis code suggested by Viterbi. It should be noted

that the previous comment reflects performance at a BER of 10-5; the Ungerboeck code has

an asymptotic coding gain of 5.0dB compared to 3.0dB for the pragmatic code.

To achieve an information rate of 3 bits per symbol with constant envelope signalling,

16PSK can be used. The best known R = 3/4, memory 6, 16PSK trellis code achieves

a BER of 10 .5 with an SNR of Eb/No = 9.6dB and, as shown, is about 6.0dB from the

Shannon Bound. If constant envelope signalling is not required, then quadrature amplitude

modulation (QAM) offers improved performance at high information rates, i.e., more bits

per symbol. The performance of three R = 3/4, 16QAM, trellis codes are shown in the

figure. The memory 4, 16QAM convolutional code proposed by TRW performs 0.5dB better

than the 16PSK code even though it has fewer states. Further improvement is available if

16QAM TCM is used. A linear, memory 4, 16QAM trellis code is 1.1dB better than the

I6PSK code and the nonlinear, memory 6, 16QAM code is 1.8dB better. The latter code

also has the advantage of being fully rotationally invariant.

Recent advances in coding theory, including coded modulation and constellation shap-

ing, and the technological feasibility of increasingly complex coding schemes have brought

the bounds of Shannon and other information theorists within sight. In fact, it has been



suggestedthatwith ' sophist!catedshap_ing:techniques,complexcodes:and large lattice theo-
retic constellationscapacity may beachievedin somespecializedsystemsin the nearfuture.
Figure i illustrates the progressmadetoward that goal.

2) Hardware Implementation of a Bandwidth Efficient Coding Scheme for
the Hubble Space Telescope
As a demonstrationof the performancecapabilitiesof trellis codesusingmultidimensional

signal sets, a Viterbi decoderwas designedand implemented for a 16-state, rate 5/6, 2.5
bits/symbol, 4-dimensional8PSK trellis code. The choiceof code wasbasedon two factors.

The first factor was its application as a possible replacement for the coding scheme
currently usedon the Hubble SpaceTelescope(HST). The HST at presentusesa rate 1/3,
v = 6 convolutional code (with 2" = 64 states) with BPSK modulation. With the modulator

restricted to 3M symbols/second this implies a data rate of only 1M bits/second, since the

bandwidth efficiency K = 1/3 bit/symbol. This is a very bandwidth inefficient coding

scheme, although it has the advantage of simplicity and large coding gain.

The basic NASA requirement was for a scheme that has as large a K as possible. Since a

satellite channel was being used, 8PSK modulation was selected. This allows a K of between

2 and 3 bits/symbol. Another influencing factor was INTELSAT's intention of transmitting

the SONET 155.52 M bits/second standard data rate over the 72 MHz transponders on its

satellites. This requires a bandwidth efficiency of around K = 2.5 bits/symbol. A Reed-

Solomon block code is used as an outer code to give a very low bit error rate (BER).

The 16-state, 2.5 bits/symbol code chosen for implementation has reasonable complexity

and a coding gain of 4.8 dB compared to uncoded 8PSK. This code also has the advantage

that it is 45 ° rotationally invariant. This means that the decoder can synchronize to any one

of the eight PSK symbols and still recover the data.

A paper describing the operation of the decoder will be presented at the NASA Lewis

Research Center 2 "d Space Communications Technology Conference [1]. A copy of the paper

is included as Appendix A of this report. The actual hardware decoder was delivered to

the NASA Center for Space Telemetering and Telecommunications Systems at New Mexico

State University in August. Its operation will be demonstrated as part of the NASA Lewis

Conference in November.

3) Construction of Long Trellis Codes for Use With Sequential Decoding

The construction of good large constraint length trellis codes for use with sequential

decoding is one of the primary objectives of this research. We have made progress on this

problem in two directions. Because of the variable computational requirements of sequential

decoding, codes with a rapidly growing column distance function (a good distance profile)

must be chosen. This reduces the time required to find the correct path and thus minimizes
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the probability of buffer overflow. A large minimum free Euclidean distance (d],.,,) is also

needed to minimize the probability of following an incorrect path. In [2], we have constructed

systematic feedforward rate 2/3 trellis codes for 8-PSK modulation with constraint lengths

up to v = 25 and rate 3/4 trellis codes for 16-QAM modulation with constraint lengths up

to v = 15. These codes have both a good distance profile and a large free distance and can

achieve asymptotic coding gains up to 6.53 dB over uncoded modulation. Hence they are

well suited for use with sequential decoding. A copy of [2] is included as Appendix B of this

report.

In [3], we have taken a different approach to the construction of good long codes. Since

the determination of the distance properties of long codes is a very time-consuming task,

and since sequential decoding is a very fast algorithm when the channel signal-to-noise ratio

(SNR) exceeds the channel cutoff rate, we have constructed new long codes by generating

codes at random and then testing their performance with sequential decoding. \Ve have found

that by testing about 100 randomly selected codes, some very good codes can be found.

That this approach is successful can be explained by the well known fact of information

theory that a randomly selected code is with high probability a good code, i.e., better than

average. Hence a relatively small sample of codes will almost certainly contain at least one

very good code. As an example, consider the construction of systematic feedback rate 2/3,

constraint length v = 8 trellis codes for 8-PSK modulation. The number of possible codes

is 221 ,_ 2 × 106. Instead of attempting an exhaustive search for the best code, we randomly

chose 100 codes and evaluated their performance at an SNR of 8.0 dB using sequential

decoding. The code with the lowest BER performs just as well as the best previously known

v = 8 code over a wide range of SNR's. It is surprising to note that this code was found by

examining the performance of less than a fraction of 5 × 10 -5 of all possible codes. A copy

of [3] is included as Appendix C of this report.

4) Performance Analysis of Multi-Level Trellis Codes

Multi-level trellis coding is a form of trellis coded modulation (TCM) which allows several

different convolutional codes to interact in the selection of a signal point for transmission. In

a single-level (Ungerboeck) TCM scheme, a single convolutional code of rate kc/nc along with

/c_, uncoded information bits are used to select a signal from a constellation of size 2 nc+k".

In a multi-level TCM scheme, one output bit from each of rn component codes along with

k_ uncoded information bits are used to select a signal from a constellation of size 2 re+k".

The main advantage of multi-level TCM over single-level TCM is that a simplified multi-

stage decoding technique can considerably reduce the complexity needed to achieve a desired

coding gain. As such, it offers the possibility of better performance for a given complexity,

or less complexity for a given performance, than single-level TCM.

The performance of multi-level trellis codes with multi-stage decoding has been studied



g

and compared to the performanc e of single-level (Ungerboeck) trellis codes with Viterbi

decoding using computer simulation [8]. The goal was to determine which scheme has the

best performance for a given decoding complexity in terms of real coding gain at a BER of

10 -5. The simulation results indicate that the multi-level codes do not have a significant

performance/complexity advantage over the Ungerboeck codes at moderate BER's. This can

be attributed to two factors: the suboptimum nature of multi-stage decoding and the dense

distance spectrum (high path multiplicity) of multi-level codes. However, since the effect

of a high path multiplicity is less significant at lower BER's, the performance/complexity

advantage is expected to shift to multi-level codes at BER's below 10 -s. A copy of [8] is

included as Appendix D of this report.

5) M-Algorithm Decoding of Trellis Codes

The M-algorithm is a reduced complexity version of the Viterbi algorithm that achieves

suboptimum error performance. It can be c0ns-i(tered as an alternative to sequential decoding

for achieving very low BER's with large constraint length trellis codes, it can also be viewed

as a reduced complexity alternative to Viterbi decoding for short constraint length trellis

codes. In particular, we have studied the performance of the M-algorithm in decoding a

new nonlinear, 90 ° rotationally invariant, rate 3/4, 64 state, 16-QAM code with a 5.44 dB

asymptotic coding gain. This new code transmits 3 bits/symbol and achieves almost 5 dB

real coding gain at a BER of 10 .5 over uncoded 8PSK. It is being considered for adoption

by CCITT as the V.FAST coding standard for Two-Wire High-Speed Modems.

One problem with a practical implementation of this code is that with rh = 2 coded

information bits and constraint length v = 6, the trellis complexity 2 _+" = 2 s = 256 is quite

large. This may be acceptable for users who require the full 5 dB coding gain. However,

other users who will not require as much coding gain may wish to employ a decoder with

less complexity. It is with this application in mind that we investigated the performance of

the proposed code with reduced complexity M-algorithm decoding.

Our results show that with decoding complexity equivalent to a 16 state code, the per-

formance of the new 64 state code with the M-algorithm is as good as the best known 16

state code with Viterbi decoding at a BER of 10 -5. When compared to Viterbi decoding of

the new 64 state code, the M-algorithm with 16 states loses less than 0.5 dB at 10 -s and

approaches the performance of Viterbi decoding asymptotically. Hence we conclude that

the M-algorithm is a promising candidate for suboptimum, reduced complexity decoding

of the proposed new 64 state CCITT V.FAST code. A paper summarizing our work on

M-algorithm decoding of the proposed new code is being prepared for submission to the

IEEE Transactions on Communications [5]. A preliminary draft of this paper is included as

Appendix E of this report.
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1 SUMMARY

As a demonstration of the

performance capabilities of trellis codes
using multidimensional signal sets, a
Viterbi decoder for one of the codes in

[1] was designed. The choice of code was
based on two factors.

The first factor was its

application as a possible replacement for
the coding scheme currently used on the
Hubble Space Telescope (HST). The HST at
pl'_sent uses the rate 1/3 v = 6 (with
2--= 64 states) convolutional code with
BPSK modulation. With the modulator
restricted to 3 Msym/s, this implies a
data rate of only 1 Mbit/s, since the
bandwidth efficiency K = 1/3 bit/sym.
This is a very bandwidth inefficient
scheme, although the system has the
advantage of simplicity and large coding
gain.

The basic requirement from NASA was
for a scheme that has as large a K as
possible. Since a satellite channel was
being used, 8PSK modulation was selected.
This allows a K of between 2 and 3
bit/sym. The next influencing factor was
INTELSAT's intention of transmitting the
SONET 155.52 Mbit/s standard data rate
over the 72 MHz transponders on its
satellites. This requires a bandwidth
efficiency of around 2.5 bit/sym. A

This work was supported in part by NASA
Grant NAG5-557 and in part by OTC Limited
under Project 1662.

Reed-Solomon block code is used as an
outer code to give very low bit error
rates (BER).

The 16 state rate 5/6, 2.5 bit/sym,
4D-8PSK trellis code from [1] was
selected. This code has reasonable

complexity and has a coding gain of
4.8 dB compared to uncoded 8PSK [2]. This
trellis code also has the advantage that
it is 45 ° rotationally invariant. This
means that the decoder needs only to

synchronise to one of the two naturally
mapped 8PSK signals in the signal set.

2 ENCODER IMPLEMENTATION

At first, a systematic encoder was
used in the design. However, it was found
that in designing a Viterbi decoder, it
would be simpler if a non-systematic
convolutional encoder was used. This is
because the state transitions in a

non-systematic encoder are highly
structured, compared with the almost
"random" transitions of a systematic

encoder.
To convert the systematic encoder

to a non-systematic form, the technique
described in [3] is used. This method
uses the fact that the impulse response
of each shift register in a

non-systematic encoder will produce
output sequences that are equivalent to
the generator polynomials. Since a
systematic encoder must also produce the
same sequences, it is relatively easy to
find k linearly independent output
sequences from a systematic encoder that

w
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Figure 1: Non-systematic encoder block diagram
for the 16 state 2.5 bit/sym 4D-SPSK trellis code.

can be used as generators of a
non-systematic encoder.

There is usually more than one set
of possible generator polynomials. The

p_lynomials _e chosen so that the inputs
x(D) and x'(D) are affected by a 45 °
phase rotation in the same way as in a
systematic encoder. Thus, the
differential encoder for the systematic
code can also be used for the non-

systematic encoder. The non-systematic
encoder equations that were found for the
4D-SPSK code are

2(0) = x2(0) • (02 O 1)xZ(D), (la)

zl(D) = D2x2(O) (]_ (02 (t_ D _ 1)xl(0), (lb)

z°(D) = Dx2(D). (lc)

Figure 1 illustrates the new

non-systematic encoder. After za,2(D_5°___ghaserotation, we have z'(0),

zl(0) = zt(0) • I(D), and z6(0) = z°(D).
/.

xR2Otating _h(i_ equatioqs in (_) gives(0) = x ) and X'r(0) = x t • I(0),.

the same as for the systematic encoder.
The encoder uses a Phase Locked

Wit

2

I

I

W

i

m
m

Loop (PLL) to generate the two times
clock for transmltung the two 2D
symbols. This PLL is based on the
74HC4046 Integrated Circuit (IC). The
encoder is able to accept data either
serially or in five bit bytes. "=

3 DECODER IMPLEMENTATION

Due to the complexity of the
decoder design, only a brief description
is given here. As such, only the _
important design decisions are described.

To reduce the cost of the codec, a
serial implementation of the decoder was -
chosen. That is, one clock cycle would be
required for each state of the code.
Since there are 16 states, at least 16

clock cycles are required to process each
received 4D point. As will be described w
in more detail later, an extra seven
clock cycles are required for start-up
purposes. Thus, a total of 23 clock
cycles are required for each iteration of
the Viterbi algorithm.

The technology and clock speed in
our design is the same as used in another _
Viterbi decoder designed by the author
[4]. This gave us greater confidence that

W
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Figure 2: Block diagram of a Viterbi decoder for the 16 state 2.5 bit/sym 4D-8PSK trellis code.

the design would work, even though the
actual design is twice as complicated.
Our design uses a 10 MHz clock (giving
100 ns clock cycles) and Schottky TI'L
logic for its ease of use and large
variety of functions. The actual
technologies used are 74LS (Low-power
Schottky TTL) for non-time critical
sections of the circuit and 74F (Advanced
Schottky TTL) for time critical sections.
Other technologies are used for functions
not available in 74F or 74LS,

The decoder is operated
asynchronously to the received data
clock. This requires one of the seven
extra clock cycles described above.
Internally, the decoder operates
synchronously to the 10 MHz clock. The
decoder starts operation after detecting
the first rising edge of the received 4D
symbol clock. After 23 clock cycles, the
decoder stops and waits for the next
rising edge of the 4D symbol clock. This
allows the decoder to operate at any data
rate from 0 to 2.1 Mbit/s.

Each iteration of the Viterbi

algorithm decodes five bits for each
received 4D signal point (since the code
rate is 5/6). The maximum 4D symbol rate
of the decoder is the internal clock

speed divided the number of Clock cycles
required to decode the five bits, i.e.,
4.35xi05 4D s.ymbols per second.
Therefore, the maxamum bit rate of the
decoder is 2.17 Mbit/s. For the HST, this
code could achieve a data rate up to 7.5
Mbit/s. For actual use on the HST, it is

intended that the decoder would be

implemented on a VLSI chip, where the
required decoding speed would be
achieved.

There are six main sections in the
Viterbi decoder. These are

• Branch Metric Calculator (BMC)
• State Metric Calculator (SMC)
• Survivor Sequence Memory (SSM)
• Signal Set Synchronisor (SSS)
• Minimum State Metric Selector (MSMS)
• Branch Point Selector (BPS)

Figure 2 illustrates a block diagram of
the decoder. The above sections are
describedas follows.

3.1 Branch Metric Calculator

For each transition of the trellis

there are 8 parallel paths (due to the
three unchecked bits in the encoder). The

BMC must determine which of the paths is
closest to the received 4D signal point

(the Branch Point (BP)) as well as the
Branch Metric (BM) for this path. The BM
can be calculated in a number of ways.

"i'heoptimum BM's for AWGN channels with
quantisation are log-likelihood metrics
[4]. Alternatively, one could make an
approximation based on the squared
Euclidean distance between the received

point and the points along the
transitions.

In our design we have chosen to use
Read Only Memory's (ROM's) to store the
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precalculated BP (three bits are used to
represent each parallel path) and BM
(based on log-likelihood metrics). The
encoder can produce one of eight (i.e.,

2 k÷l) sets of parallel paths (each
containing 8 paths). The BP and BM must
be determined for each of these eight
sets of parallel paths.

We have chosen four bits to
represent the BM value. This gives a BM
range from 0 (closest to the received 4D
point) to 15 (furthest from the 4D
point). Decoder simulations in [5] for
another multi-D trellis code indicate

that this amount of quantisation results
in little performance degradation.

To minimise the number of address

bits to the ROM, each received 2D signal
point has been quantised to seven bits.
After extensive simulations in [5] for a
6D-8PSK trellis code, it was found that
pie-chart or angular quantisation results
m the least performance degradation (0.2
to 0.3 dB for five bit quantisation). The
simulations included the "dartboard"

quantisation pattern proposed in [1].
Each ROM therefore has an address

space of 14 bits (seven bits for each 2D
symbol). The ROM's used for the BMC are
32Kx8 27C256's. A total of 6 ROM's were
used, two for determining the BP's and
four for the eight BM's.

Alternative BMC schemes which
exploit the finite length trellis
structure of the parallel transitions
were also considered. That is, a Viterbi
like decoder can be used to decode the

parallel transitions. However, their
large complexity (in a discrete
implementation) led us to choose the
simpler ROM look-up method. For a VLSI
implementation, though, the trellis
decoding method would be preferable due

to the flexibiliw that V'LSI provides in
designing ctrcmts. Thus, the Viterbi
decoder (with the BMC) could be
implemented on a single chip.

3.2 State Metric Calculator

The SMC updates the State Metrics
(SM) for each state of the code in each
iteration of the Viterbi algorithm. A SM
is an indication of how close the

received sequence is to the closest path

4

W

of all paths leading into a particular
state. Since the code has two checked

bits, there are four paths leading into
each state (since we choose the closest m
path among the 8 parallel paths in the
BMC). For each of the four paths, we must
add the BM for that path to its
corresponding SM (also known as the old
SM) from the previous iteration. The new
SM for the four paths leading into a
state is the smallest of these

summations. This path is selected and all
other paths are eliminated. This is
called the Add-Compare-Select (ACS) z
operation.

With four paths into each state a
4:1 ACS circuit is required. With 16
states in our code, the ACS operation _--
needs to be performed 16 times
(explaining the need for 16 clock --
cycles). The ACS circuit also produces
two Path Decision (PD) bits which -"
indicate which of the four paths was
chosen. This information is passed to the --
SSM where it is stored, w

Since the decoder operates
serially, only one ACS circuit is
required. The 16 SM's are stored in two
74AS870 dual 16x4 static Random Access ,,,,

Memory (RAM) chips. Eight bits are used
to represent each SM. As shown in [5] for _
a 6D-8PSK trellis code, this is more than
enough bits when two's complement "
arithmetic is used in the ACS circuit to
prevent overflow [4]. Before the f'LrSt
new SM can be calculated, four old SM's u
are read out from the RAM's. This takes
four clock cycles. It takes another two
clock cycles to perform the ACS
operation. To achieve a slightly higher
speed, we could have done the ACS
operation in one clock cycle. However,
this would have required six comparator ..
chips to find the minimum SM. An increase
of one clock cycle and the use of three
comparator chips was chosen to decrease
the complexity of the design.

Another clock cycle is used to
write to the other half of the dual 16x4
RAM's. Since all the read and ACS
operations are pipelined, an additional
15 clock cycles are required to write the
15 remaining new SM's. In the next
iteration of the algorithm we read from i
where the SM's were written in the
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previous iteration and write to where the
old SM's had been stored. The process
then repeats.

For the ACS circuit, the
appropriate BM's must be added to the
correct old SM' s. Twelve quad 2:1
multiplexer chips and a copy of the
convolutionai encoder are needed to

accomplish this task.

3.3 Survivor Sequence Memory

The SSM has two tasks. It must

store the Path Decisions (PD's) generated
by the SMC and "traceback" through the

previously stored PD's tC_ determi_ae the
f'mal decoded bits for x and x. This

requires alternating write and read (for
the traceback) operations on the memory.
The traceback depth is the required
number of PD sets (each set consists of
16 two bit PD's) that the SSM must trace
back through.

The PD's must be stored in the

remaining 16 clock cycles that are
available. There are two ways this can be
achieved. Storing two PD bits in each
clock cycle or storing four PD bits in
every other cycle, leaving the alternate
cycle to perform part of the traceback.
With the first method at least two

separate memories are required since the
traceback operation cannot be performed
simultaneously with the storage of the
new set of PD's (due to the design of
memory chips). Since there is a finite
amount of memory, the oldest PD set must
be written over.

There is usually a point where one
method is better than the other (in terms
of the total memory size required) based
on the number of clock cycles available
and the traceback depth. A traceback
depth of around 25 to 30 results in
little performance degradation [5].
Comparing the implementation complexity
of the two methods, the alternating
read/write method proved superior.

With this design only eight clock
cycles are available to perform a
traceback. To maintain integer power of 2
address spaces for the memories (and thus
efficiently use of practical memory
designs), a traceback depth of seven is
used for each SSM memory chip. To achieve

the required traceback depth, four 64×4
memories are required. This gives a
traceback depth of 28. The traceback is

performed in a pipelined fashion,
switching between memories when required
and waiting for the next received set of
data to continue with the traceback. Four

separate memories are required since
there are four tracebacks in operation at

any one time.
Since there are no 64x4 RAM's

commercially available, larger 256x4
93422A RAM's were used. This chip has
separate input and output data buses
which simplifies the SSM design. We use
the state with the smallest SM to start
the traceback. This is the best state the
SSM could start with (since it
corresponds to the path that is closest
to the received signal) and helps give
the decoder a slight performance
improvement over choosing a random or a
fixed state. The Minimum State Metric
Selector (MSMS) provides the information
needed to achieve this.

At the correct time and pla_e in

e circuit, the two decoded bits x andare produced. The two bits are passed
to the Branch Point Selector (BPS) where
they are re-encoded to select one of the
eight 3 bit branch points. The branch
points are delayed by 34 4D symbol
periods, 28 due to the traceback, 4 due
to the pipeline delay in the traceback,
and 2 due to the re-encoding of the
decoded data.

The five decoded bits are then

differentially decoded (optional) and
then parallel to serial converted for the
final decoder output. Precoding and

postdecoding are optional as there are
some communication systems that do not

require phase synchronisation. For
example, a burst modem can provide phase
information in the preamble of a burst. A
74HC4046 PLL is used to generate the

required five times clock for the serial
data. This PLL is tuned to lock within 0
to 2 MHz, but as expected for PLL's the

lower frequency limit will be somewhat
greater than DC. The decoded data is also
available in five bit bytes.

5
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3.4 Signal Set Synchroniser

The SSS has the task of

synchronising the decoder to the received
sequence of 2D symbols. Since the signal
set consists of two 2D signals, the
decoder must synchronise to one of the
two possible ways the received data can
arrive.

The decoder is asynchronously
locked to DATCLK, which is the received

2D symbol clock whose frequency has been
divided by two. A delay of zero or one 2D

symbol periods of DATCLK is used for
timing synchronisation.

The SSS works by examining the rate
of increase of the minimum SM from the
MSMS. If the rate is high, this indicates
that the decoder is out of synch and
needs to be resynchronised. A variable
threshold in the SSS is used for this

purpose. If the threshold is exceeded,
the SSS will toggle into the "arm symbol
toggel" state.

If the threshold is again exceeded
in the next V (V is a variable from 0 to
63) 4D symbol periods the decoder will
toggle the 2D symbol delay (from zero to
one or one to zero). The SSS then ignores
the decoder for 128+V 6D symbol periods
to allow the decoder to settle into its

new signal set configuration.
If the threshold is not exceeded

the SSS will "disarm" and return to its
normal monitoring state.

4 OTHER DECODER FEATURES

The encoder and decoder arc mounted
within a 3U high 19 inch rack. On the
front panel, two Light Emitting Diodes
(LED's) axe used to indicate the 2D
symbol delay_

To test the decoder, the 2D symbol
delay can be independently set to manual
control. In this way, the SSS can be
isolated from the rest of the circuitry
so that any problems with the rest of the
decoder can be fixed without the SSS
interfering. It can also be used to test
the SSS by manually introducing delays
into the received signal. There are two
switches used for this.

Two rotary type switches are used
to select the format of the received

data. One switch is used to select

between 3 bit phase (corresponding to
hard decision), 7 bit phase quantisation,
5 bit I and Q quantisation, or internal
loopback mode. The other switch selects
between signed magnitude, reverse binary,
straight binary, or two's complement data
formats for I and Q received data.

There are also switches for

disabling the postdecodcr from the
decoder and the precoder from the
encoder. The encoder has another switch
to select between five bit parallel or
bit serial data. The decoder also has a
reset button to force all the SM's to
zero. The encoder/decoder interface

diagram is given in Figure 3.

Rx I/Rx_Q/Rx_Phase--_ _ _. - -;_---Rx._dam..parallei

Rx_ _o __-"
Auto_synch_(off/on)_ _ad _ Rx-clk_serisl
Manual synch (I/2)===-H . ===_Rx_error

- Reset _ Viteroi decoder
Diff_dec_(offlon) 7-_ -

Synch threshold_ _, _.

Op_ation _ '_ (_ _ Synch._stam

hard phase/soft phase)|
I_and_Q_type

(two's eomp/sign mag/|
cornplernc_at/binaty) /

Internal loop back connection

Tx data serial-------4_ _ _ Tx sym._clk
Tx_elk'--* _ m

Diff_enc (offfon)---*: == = Encod=r

Input_(5 bit/serial)-----

Figure 3: Viterbi decoder/encoder interface
diagram for 16 state 2.5 bit/sym 4D-8PSK

trellis code.

The 159 integrated circuits of the
design arc placed on two double height
Speedwire Eurocards (233.4><220 mm).
Spe.eAwirc allows quick and reliable
connections (if it is done correctly)

between the chips that can be easily
changed. The speedwire boards also have
good groundplanes, critical when
operating at high clock speeds. The
Viterbi decoder (which operates at 10
MHz) is placed on one board (taking 96

chips) while the encoder, SSS, and
various interface chips arc placed on the
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other board.

BNC connectors are used at the back
of the rack for external data and clock
connections. It is assumed that all

received data changes on the rising edge
of its clock. Similarly, the codec
produces its signals in the same format.
"I'I'L 75 fl interface signals are used for
these external interfaces.

6 CONCLUSIONS

A serial implementation of a
Viterbi decoder for the 16 state 2.5
bit/sym code with a 4D-SPSK signal set
has been described. This decoder can
provide high data rates (up to 2.1
Mbit/s) and is intended for future use on
the Hubble Space Telescope. Due to its
serial implementation the decoder design
is quite complex, but could be
implemented on a single VLSI integrated
circuit.

The Branch Metric Calculator has

been implemented through the use of large
look-up table ROM's. A VLSI
implementation may use a Viterbi type
decoding algorithm to allow single chip
implementation.
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Abstract

Systematic feedforward trellis codes for 8-PSK and 16-QAM modulation are constructed using

a nested step by step algorithm which guarantees a good distance profile. This makes the codes

suitable for use with sequential decoding, where a rapidly growing distance profile is needed to

reduce the average number of computations. In addition to having a good distance profile, the

new codes achieve asymptotic coding gains up to 6.53 dB. A procedure based upon the Fano

Algorithm (FA) is used to calculate the free distance of the new codes. This procedure is very

effective for finding the free distances of long trellis codes because of the computational and

storage efficiency of the FA. From a comparison of the new systematic feedforwaxd codes with

Ungerboeck's systematic feedback codes, we conjecture that a systematic feedforward code of

constraint length 2u can achieve the same free distance as a systematic feedback code of constraint

length u.

1This work was supported by NSF grant NCR 89-03429 and NASA grant NAG 5-557.



m
w

1 introduction

A trellis code can be represented as a convolutional code with mapping by set partitioning

[1-3]. Usually, to send k infomation bits/symbol, a 2 k+l point two-dimensional signal

constellation is used. The incoming data is grouped as a k-bit block and fed into a rate

R = k/(k + 1) convolutionat encoder. The encoded (k+l) bits are then mapped to a

point (or symbol) in the 2 k+l point signal constellation. Once the mapping is chosen,

the performance of trellis codes is determined by the selection of the convolutional code.

Thus, the construction of trellis codes involves selecting a convolutional code to optimize

the minimum free Euclidean distance, the distance spectrum, and/or the distance profile

depending on whether Viterbi decoding or sequential decoding is being used. In this paper,
Z_ 2Z

we construct codes with good distance profiles for 8-PSK and 16-QAM signal constellations

for use with sequential decoding.

Convolutional encoders can be categorized as systematic feedforward, systematic feed-

back, and non-systematic feedforward. Only systematic feedback and non-systematic feed-

forward encoders are capable of generating optimum free distance codes. In general, there

are many non-systematic feedforward encoders which can generate a given convolutional

code. An encoder is minimal if it requires the fewest number of memory elements needed

to generate a code [4]. In order to find a minimal encoder, it is always possible to convert a

non-systematic feedforward encoder to an equivalent systematic feedback encoder [5]. The

systematic feedback encoder is unique, minimal [4], and can never be catastrophic [6,7].

Also, rate k/(k + 1) encoders in systematic feedback form simplify computer searches for

good trellis codes since there is only one parity check equation whose coefficients must be

varied. Thus, most trellis codes are constructed in systematic feedback form. Ungerboeck

[1], Porath and Aulin [8], and Pietrobon et. al. [9,10] have constructed systematic feedback

trellis codes for a variety of signal constellations. Wei [11-14] has constructed both sys-

tematic feedback and non-systematic feedforward trellis codes. In this paper, since we are

more concerned with the distance profile than the free distance or the distance spectrum,

systematic feedforward codes are constructed.

The class of systematic feedforward codes cannot achieve the same performance (free

distance) as systematic feedback or non-systematic feedforward codes with the same en-
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coder memory (constraint length). However, this class of codes is capable of achieving a

fast column distance growth (distance profile), which allows a sequential decoder to resyn-

chronize rapidly [15,16]. Since the computational complexity of a sequential decoder is

essentially independent of the code constraint length, longer codes can be used to achieve

better performance (larger free distance). Thus, the class of systematic feedforward codes

is a good choice for sequential decoding.

It has been shown by Chevillat and Costello [15,16] that a rapidly increasing Column

Distance Function (CDF) results in a rapidly decreasing computational distribution and

that the initial portion of the CDF affects the computational distribution of a sequential

decoder more than the latter portion. The distance profile of a convolutional or trellis

code is defined as its CDF over the first constraint length. Hence codes with good distance

profiles will perform well with sequential decoding. Although the results of Chevillat and

Costello were obtained for convolutuional codes, they are expected to hold for trellis codes

also. Thus, in this paper, we construct trellis codes with good distance profiles for use with

sequential decoding.

In Section 2, definitions of systematic feedforward codes and the column distance func-

tion for trellis codes are given. In Section 3, a nested step by step construction algorithm

is used to find trellis codes with a good distance profile. A procedure based upon the Fano

Algorithm (FA) is employed to evaluate the free distance of the codes constructed. In

Section 4, the results are presented and a conjecture about the relationship between the

free distance achievable with systematic feedforward and systematic feedback trellis codes

is made. In Section 5, simulation results are presented to show that the new codes, which

have better distance profiles than the Ungerboeck codes, result in a much better computa-

tional distribution and a better overall performance when used with sequential decoding.

Finally, some conclusions are drawn in Section 6.

2 Notation and Definitions

A systematic feedforward trellis code can be generated by a rate R = k/(k + 1) systematic

feedforward convolutional encoder along with mapping by set partitioning. The rate

R = k/(k + 1) systematic feedforward convolutional code can be represented as

2
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where

y=xG, (1)

_I

g

m

y = (yo k, yok-1,..., yo°; yl k, ylk-1, •-., yl0; ...... ) (2)

X : (Xok, xok-I,''•,Xo1;Xlk, Xlk-1, "•" ,xll; ...... ) (3)

are semi-infinite row vectors corresponding to the binary output and input sequences of

the encoder, respectively,

G

1Go 0G1 ... 0G,,

1Go 0G1 ... 0G_,

1Go 0G1 ... 0G_,

• , , ,,

(4)

is a semi-infinite generator matrix, 1 is the k x k identity matrix, 0 is the k x k all-zero

matrix, and

gk-1
Gi = . (5)

for i = 0, 1,2,..., u, are the column generators which define the code. u is the number of

encoder memory elements and is called the constraint length of the code• For any constraint

length u code, G_ must not be zero•

A code can also be represented using polynomial notation. In this case, the binary

output sequence y(D) is given by

y(D) = x(D)G(D), (6)

where
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y(D) = (yk(D),... ,yi(D),y°(D)),

x(D) = (xk(D), .. .,x2(D),xl(D)),

(7)

(8)
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and

G(D) =

1 o ... o Ok(D)
0 1 ... 0 Gk-_(D)

o o ... 1 O'(D)

(9)

GJ(D) = gJo + g_D +... + g_D _ (10)

forj = 1,2,.-.,k.

A general implementation of the systematic feedforward codes described above is shown

in Figure 1. Note that some input information bits (k + 1 to k) may be uncoded. In this

case, the corresponding CA(D) (j = _- + 1,...,k) are equal to zero. Encoders with some

uncoded bits simplify code construction and decoding complexity, but limit the achievable

free distance for larger constraint lengths. For short constraint lengths, however, encoders

with some uncoded bits can give optimum free distance codes [1,9,10]. The uncoded bits

introduce parallel transitions in the code trellis. For /¢ = 1, parallel transitions limit the

potential asymptotic coding gain to 3.0 dB, while for _: = 2 and k = 3 the potential coding

gains are limited to 6.0 dB and 9.0 dB, respectively. In this paper, all the information

bits are coded for the 8-PSK (k = k = 2) and 16-QAM (k = _ = 3) signal constellations

considered in order to achieve the largest possible coding gains, since we aim to construct

long codes which may achieve more than a 6.0 dB coding gain.

The signal mapper maps each binary encoder output (k+l)-tuple into one of 2 TM pos-

sible signal points (symbols). This may be expressed as

where

a(y,_) = (M,(iy.),M_(iy.)), (11)

y,_ = (y_,...,y_,y o)

is a binary encoder output vector at time unit n,

(12)

iy. =2 k x y_+...+21 xy_+2 °x yO (13)

4



is the integer index which specifiesthe symbol a(y,_), and 3I= and 3Iy are two functions

which map the index of a symbol into its in-phase and quadrature values.

Definition 1. The Column Distance Function (CDF) of order i for a trellis code, d_, is

defined as

U

m

Ill

d_ = min d2[a(y,_),a(y , (14)
X_X r

where x and x I are two distinct information sequences and d 2 [a(y,_), a(y_)] is the squared

Euclidean distance between a(y_) and a(y_).

Ungerboeck [1] defined the Euclidean weights

w2(e,_) & min d2[a(y,,),a(yn ® en)],

1 eo] is an n-bit error vector and the minimization is over all y,, =where = [eL'",

[y_,... y_, yO], and he showed that there always exists a code sequence (Yo, Yl,'", Yi) such

that
i i

d2[a(yn),a(y,_ G e,_)] = _ w2(e,_). (15)
n=O n=O

The significance of (15) is that the column distance function d_ as well as the free distance

d}_e, of trellis codes can be calculated by assuming that the all zero sequence is sent. This

simplifies the calculation of the free Euclidean distance of trellis codes in a way similar to

the calculaltion of the free Hamming distance of convolutional codes. Thus, the Euclidean

weights w2(en) are used in the calculation of the column distance function d_ as well as the

2
free distance d]_¢e.

Following [17], d 2 = (d02, d_,..., d2,) is called the distance profile of a trellis code. It

has been shown [15,16] that the CDF should grow as rapidly as possible to achieve good

performance for sequential decoding and that the initial part of CDF , i.e., the distance

profile, plays a more important role than the latter part for sequential decoding.

Definition 2 [17]. A trellis code is said to have a distance profile (do2, d_,..., d2,) superior

to the distance profile (d0a, d'_,..., d,a) of another trellis code of the same constraint length

v if for some integer p, 0 _< p _< u,

d_ = d_2, i=0,1,.--,p-1 (16)
> d_2, i = p.
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Since the class of systematic feedforward codes is suitable for use with sequential de-

coding and codes with good distance profiles perform well with sequential decoding, in this

paper we have constructed systematic feedforward trellis codes with a good distance profile.

3 The Code Construction Algorithm

From (1)-(4) and (14), we see that d_(i <_ t,) depends only on the column generators

(Go, G1,"', Gi) for systematic feedforward codes. However, for large constraint lengths,

it is impossible to conduct an exhaustive search to optimize the distance profile. Thus, we

employed a nested step by step algorithm to construct systematic feedforward trellis codes

with a good distance profile. This procedure is similar to Lin and Lyne [1S], Costello [19],

and I-Iagenauer's [20] methods for the construction of convolutional codes. The column

generators GI are selected as follows.

1) Choose the Go which results in the maximum value of do2, and set i = 1.

2) Suppose that (Go, G1,'", Gi-1) has been chosen. Choose the Gi that results in the

maximum d_. In case of a tie, the Gi that results in the minimum number of paths with

distance d_ is chosen.

3) If i = _,, go to 4). Otherwise, set i = i + 1 and go to 2).

4) Evaluate the free distance of the code.

The above algorithm provides a simple construction for systematic feedforward codes

because the distance profile up to the (i-1)-th stage does not change while searching for the

best i-th column generator. Thus, previously chosen column generators do not have to be

changed to maintain a good distance profile, i.e., the construction is nested. For systematic

feedback codes, on the other hand, the coefficients of the parity check polynomials must

be determined to specify a code. In this case, it is impossible (because of the feedback)

to maintain the distance profile at the previous i-1 stages when selecting the coefficients

of the i-th stage. Thus, the entire set of parity check coefficients must be changed at each

stage of the algorithm to find systematic feedback codes with good distance profiles, i.e.,

the construction is not nested. This algorithm can also be used to construct non-systematic

feedforward codes in a nested fashion. However, the construction of non-systematic feed-

forward codes is much more difficult since there exist many more generator coefficients at
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each stage. : : :

To calculate dr, all possible paths in the code trellis are extended at each step. The

number of paths whose distances must be calculated increases exponentially with i. Thus,

a distance cut-off value is introduced to simplify the algorithm. Only those paths whose

distances do not exceed this cut-off value are stored for further extension. For systematic

feedforward codes with natural mapping as used in this paper, it is easy to see that

d i2.t_1- d_ _ /_ 2o, (17)

where A0 is the minimum distance between the signal points in a constellation. Without

loss of generality, assume that the all zero sequence is sent. Then, (17) follows by noting

that

di+, 2 = d r + mind2[a(yi+l),a(Y_+l)]

= di2 -t- minw2(ei+l) (18)

_ zx0
The cut-off value can be estimated from the distance profiles of the shorter constraint length

codes using (17).

2
To calculate the free distance df_, a procedure based upon the Fano Algorithm (FA)

2
is used. As pointed out in the last section, df_ can be calculated by assuming that the all

zero sequence is sent. The idea of using the FA to calculate the free distance is to decode

a received sequence which is all zero. Thus, if the FA decoder is prevented from following

any path starting with the zero symbol, it will find the non-zero path which has the best

metric. By appropriately choosing the metric, the final metric of the decoded path will be

the free distance of the code.

In the FA, if we set the metric to -c<_ if the first hypothesized symbol is zero, the

decoder will never search a path starting with the zero symbol. This guarantees that a

non-zero path will be decoded and that all non-zero paths will be explored. The metric is

chosen to be 0 if the hypothesized symbol and a received symbol agree and -d 2 if they do

not, where d 2 is the squared distance between the hypothesized symbol and the received

symbol (this corresponds to the Euclidean weights w_(e,_) defined in the last section). Since

the path:with the best metric is found by a FA decoder, the final decoded path will have
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the minimum distance to the all zero path, i.e., the final metric will be the free distance of

the code.

Let A be the threshold increment and MR be the cumulative metric of the decoded

2
path. Initially, MF, A, and the tentative free distance d:re, are set equal to a constant

D known to be at least as large as the free distance of the code. This guarantees that A

will not be lowered before the decoder finds a path that merges with the all zero path.

In general, several decoding trials are needed before the free distance is found. At the

beginning of each decoding trial, we set the initial path metric :tf E = A. At the end of

2 I
each decoding trial, a new tentative free distance d.fre _ = --MR + A, is computed, where

2 I 2
My is now the metric of the final decoded path. If dj:_e, > df,.**, the previous tentative

free distance, the algorithm stops. Otherwise, another decoding trial begins with a new

2 2 i 2
(lower) tentative free distance d:_ = dl,._ and a lower A = d/r_ - (_, where (_ is chosen

very small. Simulations show that the free distance can usually be found after only two or

three trials. The free distance calculation procedure is described as follows.

1) Set A = D, where D is some constant known to be larger than or equal to the free

2
distance of the code. Set df_ -- D.

2) Set MR = A. Assume that the all zero sequence is received. Use the distance metrics

defined above to replace the Fano metric used in the FA. Decode the received sequence until

the decoder returns to the all zero state.

2 ' 2 ' 2 4). Otherwise, set d free "= d:r_,3) Calculate d:,¢e = -My + A. If d:r,_ > d:,e_ go to : 2 '

2
5 = df_¢_ - _, where $ is a very small constant, and go to 2).

2
4) Print out dfr,,.

2
The selection of D is based upon known upper bounds on df_. Several upper bounds

2
on d:r¢, for trellis codes are available [21]-[23]. Although they are derived for codes in

systematic feedback form, the bounds can be used as a good estimate of D. Actually, the

procedure is not sensitive to the selection of D as long as D is larger than the free distance

of the code, i.e., even starting with a very large D, the free distance can be found after

only a few trials. This is because the tentative free distance found after the first trial is

usually very close to the true free distance. Since systematic feedforward codes achieve

smaller free distances than systematic feedback codes with the same constraint length, the

above bounds are applicable here. 6 should be chosen smaller than the gap between the



free distance and the next smallest distance. However, since we do not know how small

this gap is, a safe bet is to choose _5very small, say a < 0.001.

Rouanne and Costello [24] used a procedure based upon a bidirectional stack algorithm

to calculate the entire distance spectrum of trellis codes. The procedure presented above

is more efficient in calculating just the free distance of trellis codes. Forney [25] was the

first one to suggest the use of sequential decoding to evaluate the distance spectrum of

convolutional codes.

4 Results and Discussion

Table I and II show the resluts of a computer search for 8-PSK and 16-QAM trellis codes

with a good distance profile, where the row generator G j is defined as

N

u

J

I

H

g

m

GJ (g,;, J .. (19)= g.-1, ",gg), J=I,2,'",]_"

All the GJ's are expressed in octal form. (Note the difference between the row generators G j

and the column generators Gi.) The minimum squared column distance d_, the minimum

2
squared free distance d/r_ , and the asymptotic coding gains are also listed in the tables.

51 is the minimum distance between the points in a corresponding uncoded 2 k point

constellation. The asymptotic coding gain 7 of each code compared to the uncoded case is

given by

g

I

W

J

-_ = 10 logl0(d}r¢,/A_) dB. (20)

2 for the previousNote that some codes in the tables have identical d_, d/,_, and "y as

(shorter) constraint length. This does not mean that the longer codes perform the same as

the shorter ones. Simulations show that the longer codes usually perform better. This may

be attributed to the fact that the longer codes have a smaller number of nearest neighbors.

Cedervall and Johannesson [26] have noted that systematic rate 1/2 convolutional codes

of constraint length 2u have about the same free distance as non-systematic codes of con-

straint length u, confirming an old conjecture by Massey. After a careful comparison of

our systematic feedforward codes with Ungerboeck's systematic feedback codes (equivalent

to non-systematic feedforward codes), we conjecture that systematic feedforward codes of
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constraint length 2v have about the same free distance as systemactic feedback codes of

constraint length u for trellis coded 8-PSK and 16-QAM. For example, the systematic feed-

forward codes of constraint lengths 9 and 18 in Table I have free distances of d}r_e/A_ = 2.46

and 3.46, respectively. On the other hand, the systematic feedback codes of constraint

lengths 4 and 8 from [1] have free distances of 2 2df_,_/A 1 = 2.58 and 3.46, respectively.

This indicates that about twice the constraint length is required for systematic feedforward

codes to achieve the same free distance as systematic feedback codes. (It should be noted

that the codes constructed in this paper may not have optimum free distance.) For trellis

coded 16-QAM, we note that the systematic feedforward codes of constraint lengths 6 and

12 in Table II have the same free distances as the systematic feedback codes of constraint

lengths 3 and 6 from [1], namely, d}r_/A_ = 2.5 and 3.5, respectively.

Our only objective in the construction of these codes was to achieve a good distance

profile, which is important for sequential decoding. It is noted that the selection of Gi in

the construction algorithm is based upon the resulting column distance d_. When several

Gi's result in the same dr, the one that gives the minimum number of paths with distance

d r is selected. However, we cannot be sure whether some other Gi that results in the same

d_ at this stage will result in a larger d_ at a later stage (j > i). Thus, the construction

algorithm does not guarantee that the codes found have an Optimum Distance Profile

(ODP), but an exhaustive construction of short codes did not find any codes with a better

distance profile. From the steps used in selecting Gi, and noting that d r depends only on

(Go, G1,'" ,Gi), we are quite confident that the codes constructed using this algorithm

are very close to ODP codes.

5 Simulation Results

Chevillat and Costello [15,16] have shown by analysis and simulations of convolutional

codes that codes with better distance profiles outperform other codes when used with

sequential decoding, both in the average number of compuations and in the distribution of

computational effort. This motivated us to construct the trellis codes with good distance

profiles listed above. Since, as pointed out in Section 1, once a mapping is chosen, the

performance of a trellis code is determined by the selection of the convolutional code, we

10



may expect that the observation of Chevillat and Costello with regard to the influence

of the distanceprofile on decodingspeedfor convolutional codeswill also hold for trellis

codes.In this section, simulation results arepresentedto verify this.

We simulated a Fano sequentialdecoderfor rate 2/3 trellis coded8-PSK and decoded

noisy data generatedfrom a two-dimensionalGaussiannoisedistribution. Eachsimulation

involvedgeneratingone thousandrandom sequencesof 0's and l's, encodingeachsequence

using rate a 2/3 binary convolutional code,and mapping the encoderoutputs into frames

(a fixed number of encodedsymbols) of 8-PSK signal points. Each frame consistedof a

sequenceof 128 8-PSK symbols, and a sequenceof 128 two-dimensional Gaussiannoise

vectors was added to form the receivedsequence.The receivedsymbols were quantized

into 8-PSK signal points using hard decisions.Then, the quantized receivedsequencewas

decodedby a simulated Fano sequentialdecoder. Simulations were performed on a SUN

3/50 computer.

In Figure 2, we show the distanceprofiles of two different rate 2/3, constraint length

u = 9, 8-PSK trellis codes. The UG code was constructed by Ungerboeck [1]. The GDP

(Good Distance Profile) code was taken from Table I. The GDP code clearly has a faster

growing column distance function than the UG code. In Figure 3, we plot the computational

distribution Pr(C > N) of both codes for the Fano sequential decoder described above.

Pr(C > N) is defined as

Nc (21)
Pr(C > N) - NF'

where Nc is the number of frames for which the number of computations exceeded N

and NF is the total number of frames decoded. Each forward look was counted as one

computation, and the simualtion was run at a signal-to-noise ratio (SNR) of Es/No = 8.0

dB, where Es is the signal energy per transmitted symbol and No�2 is the noise power per

dimension. It is clear that the computational distribution of the GDP code falls much more

rapidly than the UG code. This indicates that trellis codes with good distance profiles will

perform well with sequential decoding.

In Figures 4 and 5, we show the error performance for sequential decoding of the Unger-

boeck (UG) code with constraint length u = 8 and the GDP code with u = 18. The UG

2
code and the GDP code have the same free distance dl_ = 6.92. An erasurefree version of
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the FA, called the Buffer Looking Algorithm (BLA) [27], was used for sequential decoding.

In the BLA, an input buffer is used as in any other sequential decoding algorithm. The

buffer is divided into two sections. When the first section of the buffer becomes full, sub-

optimum decoding is employed to force the decoder to finish decoding the current frame

before the buffer overflows. In Figure 4, a buffer size of 4 K symbols, a decoder speed factor

of 4, and a frame length of 256 symbols (512 information bits) were used. (The speed factor

is defined as the number of computations that the decoder can perform during the time

required to receive one symbol.) Figure 4 shows that the GDP code, which has the same

free distance but a superior distance profile, performs better than the UG code.

Note that the performance curves in Figure 4 become closer at high SNR. Actually, the

asymptotic performance of the two codes is expected to be the same since they have the

same free distance. On the other hand, the average number of computations for sequential

decoding decreases with increasing SNR. The difference in computational effort between

the two codes will disappear eventually by noting that the average number of computations

for both codes will approach one as the SNR approaches infinity. Thus, the performace

curves of the two codes are expected to merge at some SNR for which the speed factor is

much larger than the average number of computations. However, the merging SNR will be

greater when a smaller buffer and/or a smaller speed factor are used. For example, Figure

5 shows the performance of the same two codes but with a (smaller) buffer size of 2 K

symbols, a (smaller) decoder speed factor of 3, and a frame length of 256 symbols (same

as above). Figure 5 shows that the GDP code performs better than the UG code just as

in Figure 4, but that the merging SNR is about 0.5 dB greater.

The above simulation results show that the GDP codes constructed in this paper will

perform better than the UG codes even though they have the identical free distance when

sequential decoding is used. Also, even longer GDP codes, which have larger free distances,

can be used to obtain even better performance with sequential decoding, since the compu-

tational complexity of a sequential decoder is essentially independent of the code constraint

length.

12



6 Conclusions

In this paper, a step by step algorithm wasutilized to construct trellis codeswith good

distanceprofiles. Systematic feedforwardtrellis codesfor 8-PSK and 16-QAM modulation,

with constraint lengths up to 25 and 15,respectively,wereconstructed. Thesenew codes

achieveasymptotic codinggainsup to 6.53dB. Simulations with sequentialdecodingshow

that trellis codeswith better distance profiles outperform other codes in terms of com-

putational effort and bit error rate. This is consistant with results previously found for

convolutional codes. The trellis codesreported here are therefore recommendedfor use

with sequentialdecoding.

A procedurebaseduponthe FanoAlgorithm (FA) wasusedto calculate the freedistance

of the new codes. This procedure is very effective for finding the free distance of long trellis

codes because of the computational and storage efficiency of the FA. Comparing the new

systematic feedforward codes with Ungerboeck's systematic feedback codes, we found that a

systematic feedforward code of constraint length 2_, will have roughly the same free distance

as a systematic feedback code of constraint length t/. Thus, we conjecture that systematic

feedforward codes of constraint length 2v will perform about as well as systematic feedback

codes of constraint length v.
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Table I. SystematicFeedforwardTrellis Codesfor 8-PSK.

v G _ G 2 d_2/A_ 2 2dfree/_l 7(d_)

3 12 0 1.59 1.59 2.00

4 32 20 1.59 1.59 2.00

5 52 0 1.88 1.88 2.74

6 152 100 1.88 1.88 2.74

7 252 0 2.00 2.00 3.00

8 652 400 2.17 2.17 3.37

9 652 1400 2.29 2.46 3.92

10 652 3400 2.46 2.46 3.92

11 652 7400 2.46 2.46 3.92

12 652 17400 2.46 2.46 3.92

13 20652 37400 2.76 2.76 4.41

14 60652 77400 2.76 2.76 4.41

15 60652 177400 2.76 3.05 4.84

16 260652 174400 2.76 3.17 5.01

17 660652 577400 2.76 3.34 5.24

18 1660652 577400 2.76 3.46 5.40

19 3660652 577400 2.87 3.46 5.40

20 7660652 577400 2.87 3.46 5.40

21 3660652 10577400 3.01 3.46 5.40

22 23660652 10577400 3.01 3.76 5.75

23 63660652 10577400 3.01 4.22 6.26

24 163660652 110577400 3.17 4.22 6.26

25 163660652 210577400 3.17 4.22 6.26
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Table II. Systematic Feedforward Trellis Codes for 16-QAM.

u G1 G 2 G3 d2/_ _ /_,\2_iroe_'--'l _(dB)

3 16 04 04 1.5 1.5 1.76

4 16 24 24 2.0 2.5 3.98

5 56 64 64 2.0 2.5 3.98

6 156 164 164 2.0 2.5 3.98

7 256 064 264 2.5 2.5 3.98

8 656 464 364 2.5 3.0 4.77

9 1656 0464 1364 2.5 3.5 5.44

I0 3656 2464 1364 2.5 3.5 5.44

Ii 7656 6464 5364 3.0 3.5 5.44

12 17656 16464 15364 3.0 3.5 5.44

13 37656 16464 15364 3.0 4.0 6.02

14 37656 56464 15364 3.0 4.5 6.53

15 137656 056464 015364 3.0 4.5 6.53
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Figure 1. Implementation of a General Systematic Feedforward

Convolutional Encoder.
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Probabilistic Construction of Trellis Codes
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Preliminaries

w

w

• There are two important parameters that determine fundamen-

tal performance limits for digital communication: the channel capac-

ity C and the channel cut-off rate R0.

• Channel capacity C is the maximum rate for which reliable

communication can be achieved using coding. It can only be achieved

with infinite coding complexity.

• Cut-off rate R0 is the maximum rate at which the average num-

ber of computations for sequential decoding (SD) is bounded. R0 is

regarded as the maximum rate for which reliable communication can

be achieved with reasonable comple:dty.

• We construct bandwidth efficient codes that can achieve the cut-

off rate bound at bit error rates (BER's) of 10 ..5 to 10 .6 using SD

(the Fano algorithm is used throughout the paper).

w



Channel Model u

• A discrete-input additive white Gaussian noise (AWGN) channel

is assumed.

m

mm
I

• Signal al is transmitted at modulation time lT. al is taken from

a collection of signals {a i, i = O, 1,.--,K- 1} with probability Q(i)

(i=0,1,-.-, I(-1). The average signal energy (per two dimensions) is:

m

m

m

K-1

S= E Q(i)llaill • (1)
i=0

• Noise we, variance (per dimension) 0.2.

• Channel output:

zl = al + we (2)

with probability density:

1

p{z,/a, = a i} = 27r0..iexp{

-Iz, - 2
20 .2

}. (3)

lid

I

W

mlg
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w
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• Channel signal to noise ratio (SNR)"
i

SNR = E,/No = S/2o 2. (4)
W
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Channel Capacity and Cut-off Rate on the Gaus-
sian Channel

w

• A\VGN, no constraint on the input signal sets.

= .

W

w

w

• Channel capacity (Shannon)"

C - log 2 1 + Noo "
(5)

• Cut-off rate (Shannon):

1 + k2No] +l°g2 1+ 1 + \2N0 ] .

(6)
• These expressions are independent of the signal sets, which are

_sumed to be optimum.
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Channel Capacity and Cut-off Rate for Equiprob-
able Signaling on the Gaussian Channel

R

• Discrete-input, continuous-output channel.

1
• Q(i)= F, i=O,1, ..., K-I.

g

mm

• Channel capacity (Ungerboeck): ==_

g

C* = log e K-- E. log 2 _7
K _=0 - i=0

exp ,z_ai,2z-2_2

• Cut-off rate (Wozencraft and Jacobs):

(r)

R_ = 2 Iog 2 I( - log 2 / j0 I '°' (8)

Q
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• C* and R_ are computed for specific equiprobable signal sets

and can be theoretically achieved by combining coding with those

signal sets, while C and R0 can only be approached with optimally

shaped signal sets.
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Shaping Gain

• QAM and PSI< modulation are considered.

• For QAM modulation, a smaller SNR is required to achieve C

than C*, and a smaller SNR is required to achieve R0 than R;. The

difference between these SNR's is the potential shaping gain that can

be achieved with non-equiprobable signaling.

• No shaping gain exists for PSI{ modulation because the signals

in the constellation all have the same energy.

• The maximum theoretical shaping gain is defined as the average

energy saved by choosing signals in an N-dimensional sphere rather

than an N-dimensional cube of the same volume as N approaches

infinity. The maximum gain is about 7re/6 or 1.53 dB.

• Usually, the potential shaping gain with respect to channel ca-

pacity is larger than the potential shaping gain with regard to cut-off

rate. Thus, less shaping gain is available when SD is being used.



Trellis Coded 8-PSI< Performance wi h Short Codes

• The performance of rate 2/3 trellis coded 8-PSK with constraint

length I,, = 6 using the \:iterbi algorithm (VA) is shown along with

the channel capacity and cut-off rate bounds.

• At a BER of 10 -'5 the code is about 1.4 dB awav from the P,_

bound and 3.1 dB away from the C* bound.

• The P_ bound can be approached using SD.
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Trellis Coded 16-QAM Performance with Short
Codes

• Tile performance of rate 3/4 trellis coded 16-QAM with con-

straint length 1,, = 6 using the \_a is shown along with the channel

capacity and cut-off rate bounds.

• At a BER of 10 -'5 the code is about 2.0 dB away from the R_

bound and 3.4 dB away from the C* bound.

• There is about 0.8 dB shaping gain available for 16-QAM with

regard to channel capacity. There is only about 0.4 dB shaping gain

available with regard to cut-off rate.

• The R0 bound can be approached using SD with non-equiprobable

signals and a shaping code.
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Sequential Decoding vs. Viterbi Decoding
U

• The computational effort of the \A increases exponentially with

while it is essentially independent of z_ for SD.

• SD performs very- close to maximum likelihood, but the decoding

speed is variable and data is delivered asynchronously to the user.

• The performance of rate 2/3 trellis coded 8-PSK using Viterbi

decoding and sequential decoding is shown below. Ungerboeck codes

with z_ = 6 and rJ = 8 intended for use with the \,% are used.

• Note that SD can overcome its suboptimum performance by

using a slightly larger constraint length with no penalty in computa-

tional effort.
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Code Construction Problem

• Criteria:

• Free distance (for the \'A)

• Distance profile (for SD)

• Approaches:

w

• Exhaustive search with rejection rules (Ungerboeck)

• Hueristic construction (\Vei)

• Algorithmic construction (Pora_h and Aulin)

• Problems:

• The error performance of a code is determined by its entire

distance spectrum. Better free distance may not result in better

performance.

• Determination of free distance becomes very' difficult for large

constraint lengths.

• For large constraint lengths, the set of codes becomes too

large to conduct an exhaustive search.

• Codes will be constructed in systematic feedback form through-

out this paper.
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Results from Random Coding m

• The average error probability of all rate R = k/n trellis codes

satisfies the bound (Viterbi and Omura)

2-(.+I)_Ro/R

Pa,_(e) < (2 k- 1)[1 - 2-&Ro/R] 2 (9)

for 0 _< R _< R0(1 - e), e is a positive constant, z_ is the constraint

length.

• Suppose there are a total of N codes and Pi(e) is the error

probability of the i-th code. Then,

1 N 1 K
g P/(e)= gPa,,(e) = N i=l N i=1

1 N

E Pi(e). (10)
N i=r(+x

\Vithout loss of generality, suppose the first I( (any positive integer
, .vpless than N) codes have error probabilities greater than I, ,_(e).

Then the first term in the above equation is larger than P_v(e). Not-

ing that Pi(e) is always positive, this implies that fewer than K codes

can have error probability greater than XPav(e), and hence at least

N - K codes must have error probability less than .Vp. ,(e).
/_" (.IC

• Let A = _(0 < A < 1). We conclude that at least a fraction

IP_,,(e).1 - A of all codes must have an error probability less than X
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Performance of Randomly Chosen Codes

w

m

• Let A = 0.1. Then at !e_t 90% nf all codes have error probability

P(e) < lOPo (e).
Let X = 0.5. Then at least 50% of all codes have error probability

P(e) < 2P._(e).

• The SD performance of a set of 100 randomly chosen rate 2/3

trellis codes for 8-PSK modulation with L, = 8 and SNR = 8.0dB

is shown below•

• Note that several codes are found with very good performance.
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An Approach to Constructing Good Long Codes g

• The purpose ofcode construction is to determine the codes that

give the best performance. Codes mav be chosen based upon their

distance properties or their actual performance.

• Noting that it may not be possible to evaluate the distance

properties of long codes, the direct evaluation of performance may

be the best practical way to construct long codes.

• The above discussion and simulations imply that some good

trellis codes can be found from a randomly chosen set of codes.
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• Since its computational effort is essentially independent of z_, SD

can be used to determine the performance of a set of large constraint

length codes chosen at random.

• Since a randomly chosen set of codes contains some good codes

with high probability, it should be possible to find codes using this

approach whose performance with sequential decoding meets the R0

bound.
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Another Approach: Simulated Annealing

• Simulated annealing is a computational heuristic for obtaining

approximate solutions to combinatorial optimization problems.

• Code construction max' be viewed as a combinatorial optimiza-

tion problem where the parity check (or generator) coefficients are

the variables and the free distance or the performance of a code is

the objective (cost) function.

• Simulated annealing has been used to construct block codes (El

Gamal and others).

w

= =

• \Ve try to construct good large constraint length trellis codes

using simulated annealing. The SD performance is used as the cost

function.
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Construction Algorithm i: Random Search

• Let Nc be the number of codes to be examined, Nb be the num-

ber of encoded sequences (each sequence consists of m information

bits) to be decoded for each code, and Pb be the average bit error

probability of a code.

• The basic algorithm:

1. Choose the SNR at which the codes are to be evaluated, No, and

Nb. Let nc and nb be the number of codes examined and sequences

decoded thus far. respectively. Set nc = 0, nb = 0. and Pb = 1.0.

2. Select a code by randomly choosing the generator (or parity-

check) coefficients.
3. Encode a randomly chosen sequence of m information bits using

_the code ciiosen in 2. ..........

4. Add channel noise to the encoded sequence.

5. Decode the corrupted sequence using sequential decoding. Set

nb = nb + 1. If nb < Nb, go to 3. Otherwise, go to 6.

6. Calculate the average bit error probability Pbt of the Nb encoded

sequences. If Pbt > Pb, go to 8. If Pbt _< Pb, go to 7.

7. Print P_t and the generator (or parity-check) coefficients of the

code. Set P_ = P_,t.

8. Set nc = n_ + 1. If nc < Nc, go to 2. Otherwise, stop.

• Some modifications can be made to speed up the construction.

• The information block size m is usually chosen to be 1000 bits.
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Construction Algorithm 2: Simulated Annealing

= z

v

w

L

• Let N_ be the number of energy drops required to lower the tem-

perature, Ni be the number of iterations required to lower the tem-

perature, and Nc be the number of consecutive temperature stages

that produce no change in the code required to stop the code search.

• Define the energy (cost function) of a code C as Energy(C) =

Pb(C), where Pb(C) is the average bit error probability of the code

C at some SNR.

• The procedure:

1. Let n_ be the number of energy drops, ni be the number of iter-

ations, and nc be the number of consecutive temperature stages that

produce no change in the code. Choose a code C and a temperature

T. Let n_ = 0, _i -- 0, and nc = 0.

2. Choose a code C 1, a perturbation of C (randomly "jiggle"

one coefficient). Let AE = Energy(C I) - Energy(C). If AE < 0,

C _ C _and n_ = n_+l. Otherwise, with probability exp(-AE/T),

C _ C. If C _ C _ occurs, let nc = 0.

3. ni =hi-6 I.

4. If n_ >_ N_, go to 6.

5. If ni >_ Ni, go to 6.

Otherwise, go to 5.

Otherwise, go to 2.

6. Let n_ = 0, ni = O, nc = nc -6 1, and T _ c_T (1 > c_ >_ 0.9,

a constant). If nc < Arc, go to 2. Otherwise, print out the code

generator (or parity-check) coefficients and stop.

• Typical threshold values are N_ = 3, Ni = 20, and Arc = 5. A

code with all zero coefficients (a poor code) is chosen as the initial

C. T is usually chosen to be roughly one hundred times the expected

BER of the best code.
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Comparison of the Two Algorithms

• Trellis codes for S-PSI( modulation with constraint lengths u = 7

and 8 are constructed. A total of 200 codes are evaluated using the

random search while several hundred to several thousand codes are

evaluated using simulated annealing. The codes are evaluated at an

SNR=7.75 dB.

• The performance of the best codes constructed is compared be-

low. It shows that the codes constructed by the two algorithms

perform almost the same.
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Comments on the Construction Algorithms

w

w

• Our confidence in the performance evaluation of a code depends

on the number of errors decoded. Usually several hundred errors are

decoded for each code evaluated.

• To insure that good codes are found, two steps are employed.

First, several codes that perform well at the chosen SNR are obtained

from the search procedure. These codes are then evaluated over a

wide range of SNR's with much more data being decoded. This

allows us to select the best code with a high degree of confidence.

• Although many more codes have been tested using simulated

annealing, the codes obtained using this approach actually perform

slightly worse than the codes found by the random search procedure.

This may be attributed to the fact that simulated annealing tends

to lead the search to a local minima.
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Comparison of New Short Codes with Ungerboeck
Codes (Viterbi Decoding)

• Trellis codes for S-PSI( modulation with r_ - 4 and r, = 7 are

constructed using the random search algorithm with IVc = 200 and

decoded using the VA. The performance of the new codes along with

Ungerboeck codes of the same constraint length is shown below.

• At low SNR, the new codes perform slightly better than the

Ungerboeck codes. This is due to the fact that the Ungerboeck codes

have larger path multiplicities than the new codes.

• A calculation of the distance spectrum shows that in many cases

the new codes have smaller multiplicities but less free distance than

the Ungerboeck codes. This is because the codes are constructed at

a low SNR.
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Comparison of New Short Codes with Ungerboeck
Codes (Sequential Decoding)

• The same codes are now decoded using SD. Their performance

is shown below.

• The new codes perform better than the Ungerboeck codes over
T

a wide range of SNR with SD. This is due to the fact that the 15nger-

boeck codes were not designed for use with sequential decoding, i.e.,

their distance profiles are suboptimum.

• Note that the performance of these codes with SD is only a few

tenths of a dB worse than with the _v_4.
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Comparison of New Codes with Best Known Codes

• The performance of rate2/3 trelliscodes for8-PSI( modulation

usingUngerboeck codes,Porath and Aulin codes,and the new codes

iscompared usingsequentialdecoding at an SNR= 7.75dB.The new

codes have the best performance over the entirerange of constraint

lengths.

• The same approach can be used to construct rate 3/4 trellis codes

for 16-QAM modulation. Similar results are obtained. However. the

longest previously known 16-QAM trellis code has z_ = 10. We have

constructed new codes for i6-QAM with u up to 20.
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Approaching the Cut-off rate Bound for

Trellis Coded 8-PSK Using Long Codes
Rate 2/3

• Complete
assumed.

sequential decoding with an infinite input buffer is

• Our aim is to approach the P,_ bound at a BER of 10-5 _ 10-6

The performance of some new codes is shown below. Note that the

cut-off rate bound is achieved at a BER of 10 .5 with _, = 16, but

that larger constraint lengths will be needed to achieve the bound at
a BER of 10 -6.
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Erasurefree Sequential
(Rate 2/3, 8-PSK)

Decoding of Long Codes

is a modification of SD

decoding

in some

• The Buffer Looking Algorithm (BLA)

which guarantees erasurefree decoding by adjusting the

speed before the input buffer can overflow. This results

loss in B ER performance,

• The B LA with a buffer size of 64 t( symbols, a speed factor of

16, and an information block size of 512 symbols is used. Note that

the cut-off rate bound is achieved at a BER of 10 ..5 with _, = 17,

only one larger than for the infinite buffer case.

• The B LA with a speed factor of 4 can achieve a B ER of 10 .5 at

a SNR=7.8 dB, only 0.2 dB away from the cut-off rate bound.

i

I

m

im
u
|m

.Q

.Q
O
L_

O
IL_

L_

im

.Q

10-3

10-4.

i

I
V =15

I

V=16I

V=17

I,,
Ro Bound

10-5

10 6

7.0 7.5 8.0 8.5

t

I

I

J

Ill

J

SNR (EstNo)



Approaching the Cut-off Rate Bound for Rate 3/4
Trellis Coded 16-QAM Using Long Codes

• The performance of some new rate 3/4 trellis codes wi_h 16-
QAM modulation is shown below.
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Computational Effort of SD" Theory

• It is well known t,hat the average number of computations for

SD has the following properties

400, R> R0c_ =__A a<a0
p-I _

where A and p areconstantsrelatedto a specificversionofsequential

decoding and the code rateR, respectively.

• Note that Ca. is independent of the code constraint length _,.

• Also note that R0 is the maximum rate at which SD can achieve

good performance.
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Computational Effort of SD: Practice

• The figure below shows the averag_ n, lmber of computations

for sequential decoding of trellis coded 8-PSK as a function of i,, at

an SNR = 7.5dB (below the R0 bound) and an SNR = 7.75dB

(above the R0 bound).

• Ca,, increases moderately with increasing v for R < R0.

• Ca_ increases rapidly with increasing v for R > R0.

• This figure shows that it is not possible to beat the R0 bound

using SD.
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Conclusions
w

• Codes which achieve the cut-off rate bound at BER's of 10-5 ..o

I0 .6 can be constructed using a random search approach. This has

been demonstrated by constructing trellis codes for 8-PSK and 16-

QAM modulation. Significant coding gains can be achieved when

sequential decoding is used to decode those codes.

• The codes constructed in this paper outperform the best known

codes using sequential decoding. Using the buffer looking algorithm,

a modification of sequential decoding which eliminates erasures, our

results show that the cut-off rate bound can be achieved at a BER

of 10.5 for both 8-PSK and 16-QAM modulation. This performance

is obtained using moderately large constraint lengths and reasonable

decoder speed factors. Compared with Viterbi decoding of short

constraint length codes, more than 1 dB of additional coding gain
can be achieved at a BER of 10-'5.
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Appendix D

On Multilevel Trellis MPSK Codes
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Introduction B

• Ungerboeck has designed two-dimensional (2D) single level trel -_

lis codes (SLTC's) for MPSK modulation with asymptotic cod-

ing gains of 3-6 dB.

• Pietrobon, Deng, et. al. have designed multi-dimensional (MD)_

SLTC's for MPSK modulation with comparable coding gains

and higher spectral efficiencies.

• These SLTC_s use Viterbi decoding and are found by exhaustive
search. The decoding and code search complexity both grow

exponentially with constraint length.

• Thus, it is very difficult to find and optimumly decode SLTC'_

with large Euclidean distance.

• Multilevel trellis codes (MLTC's) with large Euclidean distanc_

are easily designed and can be decoded using suboptimum re-_

duced complexity multistage decoding (MSD). ( Calderbank, Sayeg_)

m

u

• Problem: Can one design MLTC's with a clear performance-

complexity advantage over SLTC's? There are two difficulties:

1. High path multiplicities (error coefficients) of h/ILTC's.

2. Performance loss due to MSD.
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w Coded Modulation Performance

-0 One measure of the performance of coded modulation

is the asymptotic coding gain

schemes

where d} is the minimum squared Euclidean distance (MSED)

of the coded system and d_ is the MSED of an uncoded system

with the same spectral efficiency.

=. For

w

2D SLTC's, simulation results have shown that the real

coding gain is within 0.5- 1.5 dB of the asymptotic coding gain

at a bit error rate (BER) of 10 -5. Thus, 7 is a reasonable measure

of the code performance.

-. For MD SLTC's and for MLTC_s, there can be a much larger

difference between the real and asymptotic coding gains at 10-5

- due to the dense distance spectra and high path multiplicities.

_o Hence, it is necessary to develop a better analytical measure of

performance for these codes.

• We have treated the real coding gain of MD SLTC's in a pre-

vious paper. In this paper, we examine the real performance

(real coding gain) of 2D MLTC's with MPSK modulation using

_ binary partitions.

w
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MPSK MLTC's I
I

• A 2D MPSK signal set can be refined into log2(M ) levels using z

a binary partition. This induces a mapping of log2(M)-tuples

to individual points in the MPSK signal set assuming natural_

labeling. _........

• With MLTC's a different code is used at each of the log2(M ) levels"

in the binary partition. Some of the levels may be left uncoded.-
I

• The codes at each level are called Component Codes and are de-

noted Ci for i = 1, 2,..., log2(M ).

• For a log2(M ) level MPSK trellis code with component codes Ci,2

the minimum squared Euclidean distance is given by _-

d) - rnin{diS_, i - 1,2,..., log2(M)}

where di is the minimum Hamming distance of the i th component _"

code and 5_ is the minimum squared intrasubset distance at
• J

the i th level in the binary partition of the signal set. (Gmzburg,

• This usually leads to choosing C1 to have a large minimum Ham-_

ming distance, i
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Ge:aeI'al MLTC Encoder Block Diagram
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Example 1

", CGnsider a three level 8PSK trellis code with

1. C1 an 8 state rate 1/4 convolutional code with dl = 13

2. C2 an 8 state rate 3/4 convolutional code with d2- 4

3. C3 a (32,31) single parity check block code with d3 = 2

- and rate R = 1/4 + 3/4 + 31/32 = 1.97 bits/symbol.

_. This code has free distance

w

d}_ = min{ 13x0.586, 4x2, 2x4}

= 7.618

and an asymptotic coding gain of

7 = 5.81dB

relative to uncoded 4PSK (_ = 2).
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w An Argument for the Gap at 10 -5

--. Forney has proposed a

h .

w

tion schemes that states

by a factor of 2 results

10 -5 .

rule of thumb for trellis coded modula-

that each increase in path multiplicity

in a 0.2dB loss in real coding gain at

• Thus, the effective coding gain of a trellis code at 10 -'_ is given by

"Yeff -- 10 lOglo d_J

where Nf_e¢ is the number of paths at the code's free distance.

=- (Nf_¢ of any uncoded 2D MPSK system is 2.)

,, • Since there are two nearest neighbors in each subset at the first

level of a binary MPSK partition, the MLTC has

w

Neff "- 2dlN(dl)

paths at distance dis 2 due to the first component code, where

N(dl) is the multiplicity of the minimum distance path of C1.

Subsequent component codes may also affect the path multi-

plicity.

• Nef f is called the effective path multiplicity.

• For 8PSK, assuming that d1521 < d2522 and dis 2 <_ d35_, then

(_u) -- 0"21°g2 (2diN(d1)")'eff -- 10 log_o 2

which reaches a maximum of 3.89 dB for dl = 22 and N(dl) = 1.
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Example 1 Revisited

• For the MLTC of Example 1, dl = 13 and N(dl)= 1. Thus, the_

effective path multiplicity due to the first component code i,

Neff = 213 and the effective coding gain at 10.5 is only "

%ff = 3.41dB,

or 2.4dB less than 7.

m

ZZ

D

I

Example 2
=--

g

• If we change C1

dl - 16 and N(dl)= 1, then _frc_ = 8.0 and

to the 16 state rate 1/4 convolutional code witE-

m

7 = 6.02dB,

but Nef f _-- 216 and the effective coding gain is only

7elf -- 3.71dB.

I

J

= =

W

• Conclusions (based on Forney's rule of thumb):

1. For MLTC's increasing the MSED involves using low

codes with large minimum distance at the first level.

U

rate

Thi_

results in an exponentially increasing effective multiplicity.

2. It is unlikely that MLTC's can achieve more than 4dB of rea_

coding gain at a BER of 10 -5.
g

r_



Performance Loss Due to Multistage

Decoding

_e Another issue in the performance of MLTC's is the suboptimal-

ity of multistage decoding (MSD). That is, how much coding

gain is lost due to MSD?

• The loss due to MSD can be measured by comparing simulation

results of a specific MLTC using maximum likelihood Viterbi

+ decoding and MSD.

• For the multilevel codes in examples 1 and 2, simulation re-

sults show a loss of ldB at a BER of 10-5 due to MSD. This is

comparable to the loss of other suboptimal decoding techniques

relative to Viterbi decoding.

w

m

imm

*m

to Decoder for C 3

from Decoder for CM. 1
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Comparison to SLTC's

-. The R- 2/3 (2 bits/symbol), 16 state, 8PSK Ungerboeck SLTC

is of comparable complexity to the MLTC of Example 1, but

- has an asymptotic coding gain of

7 = 4.13dB

and a real coding gain

10 -5"

(from simulations) of 3.2 dB at a BER of

- • Conclusions:

w

w

1. Most MLTC's with large MSED's will not have a performance-

complexity advantage over SLTC's in terms of real coding

gain at a BER of 10 -5.

2. However, the asymptotic coding gain of MLTC's is superior

to that of SLTC's.

3. It is possible to construct high rate, two level MLTC's with

a clear performance-complexity advantage over comparable

SLTC's.
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High Rate MPSK MLTC's

., • By using high rate codes at the first level, it is possible to con-

struct some high rate MLTC's with a performance-complexity

advantage over high rate MD SLTC's. (This has also been suggested

by Pottie and Taylor. )

• The use of high rate (low minimum distance) codes for C1 re-

duces the high multiplicities of MLTC's.

• With

1. C1 a rate 1/2 convolutional code,

- 2. C2 an (L,L- 1) single parity check block code with d2 - 2,

3. C3 uncoded,

we can construct a class of rate

1 r
R = 1/2 + (L - 1)/L + 1 = 2.5 - _bits/s) mboI

MLTC's with a performance-complexity advantage over the R =

.. 2.5 bits/symbol, 2xSPSK codes of Pietrobon, Deng, et. al..



Example 3

• Consider a three level 8PSK trellis code with

= =

u

I

1. C1 a 4 state rate 1/2 convolutional code with dl = 5,

2. C2 a (64, 63) single parity check block code with d2 = 2,

3. C3 uncoded,

I

I

and rate R = 1/2 + 63/64 + 1 = 2.48 bits/symbol.
m
B

• This code has free distance m
I

d},.ee = min{5xO.586, 2x2, lx4}

= 2.93,

with Neff = 32, an asymptotic coding gain of

,_ = 3.98dB,

g

z

m

and an effective coding gain of
, =

Q'eff = 3.18dB.

• The R = 2.5 bits/symbol, 4 state, 2xSPSK SLTC

Deng, et. al. has

d}_¢_ = 2.0,

with Nf,._ = 4, an asymptotic coding gain of

-y = 2.32dB,

and a real coding gain (from simulations) of 2.3 dB

10-5.

• Note, d2 = 1.172 and Nu = 4, so "/eff -- 7"

of Pietrobon,-

g

U

at a B ER of:-

U

m

w
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Concatenated Multilevel MPSK Codes
U

• Part of the performance loss of MLTC's with MSD is the result_

of error propagation from previously decoded higher levels to

lower levels. It makes sense, then, to try to prevent errors at_

the higher levels.

• One way of combating error propagation is to use concatenated _

coding on one or more levels. (This has also been suggested by Rajpal,

Rhee, and Lin and by Herzberg, Be'ery, and Snyders.) "

• Let Pi,i_ and Pi,out denote the probability of incorrectly decoding=

the i th stage inner and outer code, respectively, and Pi,i_ll,o_,t,,i-l,ou_

the probability of incorrectly decoding the i th stage inner code"

given that the first (i- 1) outer codes were correctly decoded.

• Let P2,inll,out,correct and P2,in[1,orut,incorrect be the probability of incor-
rectly docoding the second level inner code given that the first..

outer code was correctly and incorrectly decoded, respectively._
m

M
Then,

P2,in - (1 - Pl,out)P2,inll,out,correct-_ Pl,outP2,inll,out,incorrect,

where the last term represents the error propagation from the_

first level to the second level.

• Since the first outer code is very powerful, "

Px,out << 1

and -
u

Flout _ P2,inll,out,correct

and the expression for P2,in is dominated by the first term.

• Thus,

P2,in _ P2,inlrl,out,correct

and the error propagation has essentially disappeared.

g
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Example 4

-. For example, consider a three level 8PSK trellis code --,-,1_,_,.

1. Cl,in a 4 state rate 1/4 convolutional code,

2. C2,i,_ an (8, 7, 2) single parity check block code,

3. C3,in uncoded,

- and

w

r

1. Cl,out the extended (64,52) RS code,

2. C2,o_,t the shortened (96, 86) RS code,

3. C3,o_,t the shortened (192, 188) RS code.

L

w

t_

!.-

O

m

u

t_.

II

"m

t_

t (64,52) RS Encoder _Interleaver _

(96,86) RS Encoder _Interleaver _-_

(192,188) RS Encoder _-_Interleaver i

R=l/4 Conv. Code

(8,7) Block Code

Uncoded

J Xo i

X 2

w

• This code has a spectral efficiency of 1.966 bits/symbol and

simulation results show a real coding gain of 4.0dB at a BER of

10 -5"
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Conclusions

_ • The dense distance spectra and high path multiplicities of mul-

tilevel trellis codes result in a significant difference between the

asymptotic and real coding gains.

• The effective path multiplicity can be used to estimate the real

coding gain of multilevel trellis codes at a BER of 10 -_.

- • The performance loss due to MSD is comparable to that of other

suboptimal decoding techniques.

• High rate, 2 level MLTC's with MSD appear to have a distinct

L performance-complexity advantage compared to SLTC's with

Viterbi decoding.

• Error propagation in 5¢ISD can be effectively reduced by using

concatenated codes at one or more levels.

• It may be possible to reduce the effective multiplicity of MLTC's

" with MSD by introducing dependencies between levels. How-

...... ever, this makes finding the free distance of MLTC's more dif-

ficult. (Ginzburg and Tanner's bound may no longer hold.)
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Appendix E

M-Algorithm Decoding of the Proposed
Nonlinear 64-State V.FAST Code
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M-algorithm Decoding of the Proposed

Nonlinear 64-State V.FAST Code *

Lance C. Perez

Daniel J. Costello, Jr.

Department of Electrical and Computer Engineering

University of Notre Dame

Notre Dame, Indiana 46556

May 7, 1991

Abstract

M-algorithm decoding of a rotationally invariant nonlinear 64 state

trellis code proposed for the CCITT V.FAST "ultimate modem" stan-

dard is considered. In this study, the M-algorithm is implemented in a

continuous mode of operation, that is, the data is not framed. Simula-

tion results show that M = 16 gives performance as good as or better

than the best known 16 state code with Viterbi decoding at a bit error

rate of 10 -5. When compared to Viterbi decoding of the 64 state non-

linear code, M = 16 loses less than 0.SdB and M = 8 less than 1.2dB at

10 -5 . Asymptotically, the M-algorithm performance approaches that

of the 64 state Viterbi decoder even for small M.

"This work was supported in part by NASA Grant NAG5-557, NSF Grant NCR89-

03429, and NSF Fellowship NSF-RCD89-54851.



m

1 Introduction

The complexity of a rotationally invariant nonlinear 64 state trellis code[l]

proposed for the CCITT V.FAST "ultimate modem" standard has led to the

consideration of suboptlmal decoding techniques for]nitial implementation.

An appropriate suboptimum decoder should have the following properties:

• Significant reduction in complexity compared to a full 64 state Viterbi
decoder.

• Fixed decoding delay.

• Fixed number of computations per decoded branch.

• Not require framing of the information bits.

• Minimal reduction in the effective real coding gain and asymptotic

performance approaching that of the full 64 state Viterbi decoder.

A decoding technique that appears to satisfy these criteria is the M-algorithm.

2 The M-algorithm

The M-algorithm is a reduced state trellis search decoding algorithm param-
eterized by M, the number of states or paths stored by the decoder, and L,

the decoder path memory (truncation length)J2-4]. The algorithm consists

of the following three steps:

1. Path extension

2. Path deletion

3. Sorting.

It is best explained in terms of an example.

Consider the nonlinear 64 state trellis code using 16QAM modulation

from [1] and M-algorithm decoding with M = 8 and L = 20. With this

signal set, the code has rate R = 3/4 with vh = 2 coded information bits

and m - rh = 1 uncoded bit resulting in 2 parallel transitions. At time nT,

the decoder has stored M = 8 paths, their metrics, and the path history for

the last 20 branches. It is important to recognize that each of the M = 8

paths terminates in a unique state (though it may be any of the 64 states).
At time (n ÷ 1)T, the decoder performs the following operations:

m
I

z
m

g

I

W

Q

g

g

J

U

g

m

g

m

g

m

I



Extends each of the M = 8 stored paths into 2 '_ = 4 paths and com-

putes each of the 4M = 32 new path metrics. Subset (parallel transi-

tion) decoding is assumed to be done by the demodulator.

If any of the 4M = 32 paths now end in the same state (at time nT

the M = 8 paths ended in unique states), then only the path with the
best metric for each state is retained and the rest are deleted. This is

essentially an Add-Compare-Select(ACS) operation.

The remaining paths are then sorted by path metric and the best
M = 8 are chosen as survivors. The oldest branch associated with

the current best path is released as decoded information bits and the

newly decoded branches are stored in the path memory.

For M much smaller than the full number of states, path deletion (Step 2) is

not often required and is ignored in complexity considerations. Nevertheless,

the path deletion step is important to the M-algorithm and performance

degrades if it is ignored.

Ignoring the path deletion step, the M-algorithm requires MB addition

operations, where B z_ 2,_, and the sorting operation. It can be shown that

finding the best M paths out BM paths requires

CM _ BM + M + f(BM)

computations, where f(BM) is a function that grows more slowly than its

argument, that is

lim f(BM) _ O.
B M---,oo B M

The computational complexity of the M-algorithm is then M(2B + 1) +

f(BM). A Viterbi decoder with V states requires BV addition operations

and (B-1)V compare operations for a total of (2B-1)V computations. Thus,

if M is much less than V, the M-algorithm results in a significant reduction

in complexity. It is also clear that the decoding delay and the number of

computations per decoded branch are fixed. Wlth M=V, the M-algorithm

is identical to the Viterbi algorithm.

The principal difficulty with the M-algorithm is the possibility that at

some time the correct path is not among the best M paths and is discarded.

This is referred to as path loss and leads to long bursts of errors until the

decoder reacquires the correct path. To mitigate this effect, the informa-

tion stream is usually framed and the decoder periodically forced to the all

3
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zero state[5]. Since framing is undesirable in the V.FAST application, this

approach is not taken here and the M-algorthm is operated in a continuous

mode with no framing. It should be noted that there exist a number of path

recovery schemes for the M-algorithm that may be used to resynchronize the

decoder in place of framing[6,7]. The application of these recovery schemes

to trellis codes has not been investigated.

3 Simulation Results

The performance of the M-algorithm in decoding the nonlinear 64 state

code was investigated using Monte Carlo simulation. In all the simulations,

unquantized squared Euclidean distance is the metric and no framing is
used. The channel is simulated with an Additive White Gaussian Noise

(A_,VGN) model. To account for the nonlinearity of the proposed code and

the nonuniform error probability of trellis codes in general, the performance

was averaged over four nonzero information sequences.

In Figure 1, the performance of the M-algorithm with (M,L) = (16,120)

and (8,120) is compared to the performance of the proposed nonlinear 64

state code with Viterbi decoding and the best known linear 16 state code

[8] with Viterbi decoding. A truncation length of 120 branches was used for

the Viterbi decoders in this case to assure maximum likelihood decoding.

At a bit error rate (BER) of 10 -s, the performance with (M,L) = (16,120)

is only 0.5dB worse than the 64 state Viterbi decoder and is essentially the
same as that of the 16 state code. The performance of the M-algorithm with

(M,L) = (8,120) is within 1.2dB of the 64 state code and 0.6dB of the 16
state code.

Figure 2 shows the performance of the M-algorithm as a function of the

path memory, L, for M = 16 and M = 8. This figure clearly demonstrates

the robustness of the M-algorithm to variations in L. The performance of

the nonlinear code with 64 state Viterbi decoding is shown in Figure 3 for a

number of truncation lengths. There is a slight degradation in performance

as the truncation length decreases.

As mentioned previously, no framing or path recovery scheme was con-

sidered in the simulation of the M-algorithm. Consequently, it is expected

that path loss w0uid:occasionaliy occur and cause long bursts of errors: One

indication........... of t_is is the variation in performance of the d!fferent!nformation
sequences relative to the average performance. This is shown in Figure 4

for M = 16 and L = 30 (the variation is also insensitive to L). This figure
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shows the increased variation in performance with increasing SNR that is

symptomatic of path loss. However, it must be remembered that this code

does not have the uniform error probability property and some variation is

expected even with full 64 state Viterbi decoding. (This variation is shown

in Figure 5.) Comparison of these two figures reveals only a moderate in-
crease in variance for the M-algorithm. Though these results are far from

conclusive, they indicate that path loss may not be a significant problem

and that the M-algorithm can operate satisfactorily in a continuous mode

with trellis codes.

w

4 Conclusion

The M-algorithm appears to be a promising candidate as a suboptimal de-

coder for the proposed nonlinear 64 state CCITT V.FAST code. The M-

algorithm gives good performance with moderate complexity and has the

desirable qualities of fixed delay and computation. One possible obstacle to

using the M-algorithm is path loss and the resulting burst of errors. It may

be possible to implement a path recovery scheme to alleviate this problem

with only a moderate increase in complexity.
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